Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1101, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424441

RESUMO

Human-driven extinction threatens entire lineages across the Tree of Life. Here we assess the conservation status of jawed vertebrate evolutionary history, using three policy-relevant approaches. First, we calculate an index of threat to overall evolutionary history, showing that we expect to lose 86-150 billion years (11-19%) of jawed vertebrate evolutionary history over the next 50-500 years. Second, we rank jawed vertebrate species by their EDGE scores to identify the highest priorities for species-focused conservation of evolutionary history, finding that chondrichthyans, ray-finned fish and testudines rank highest of all jawed vertebrates. Third, we assess the conservation status of jawed vertebrate families. We found that species within monotypic families are more likely to be threatened and more likely to be in decline than other species. We provide a baseline for the status of families at risk of extinction to catalyse conservation action. This work continues a trend of highlighting neglected groups-such as testudines, crocodylians, amphibians and chondrichthyans-as conservation priorities from a phylogenetic perspective.


Assuntos
Conservação dos Recursos Naturais , Tartarugas , Humanos , Animais , Filogenia , Vertebrados/genética , Evolução Biológica , Anfíbios , Biodiversidade
2.
Proc Natl Acad Sci U S A ; 114(5): 1177-1182, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096412

RESUMO

Neurotransmission in dentate gyrus (DG) is critical for spatial coding, learning memory, and emotion processing. Although DG dysfunction is implicated in psychiatric disorders, including schizophrenia, underlying pathological mechanisms remain unclear. Here we report that transmembrane protein 108 (Tmem108), a novel schizophrenia susceptibility gene, is highly enriched in DG granule neurons and its expression increased at the postnatal period critical for DG development. Tmem108 is specifically expressed in the nervous system and enriched in the postsynaptic density fraction. Tmem108-deficient neurons form fewer and smaller spines, suggesting that Tmem108 is required for spine formation and maturation. In agreement, excitatory postsynaptic currents of DG granule neurons were decreased in Tmem108 mutant mice, indicating a hypofunction of glutamatergic activity. Further cell biological studies indicate that Tmem108 is necessary for surface expression of AMPA receptors. Tmem108-deficient mice display compromised sensorimotor gating and cognitive function. Together, these observations indicate that Tmem108 plays a critical role in regulating spine development and excitatory transmission in DG granule neurons. When Tmem108 is mutated, mice displayed excitatory/inhibitory imbalance and behavioral deficits relevant to schizophrenia, revealing potential pathophysiological mechanisms of schizophrenia.


Assuntos
Transtornos Cognitivos/genética , Giro Denteado/fisiologia , Filtro Sensorial/genética , Proteínas de Transporte Vesicular/fisiologia , Animais , Animais Recém-Nascidos , Transtornos Cognitivos/fisiopatologia , Giro Denteado/metabolismo , Modelos Animais de Doenças , Eletroporação , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo , Genes Reporter , Ácido Glutâmico/fisiologia , Células HEK293 , Humanos , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Neurônios/ultraestrutura , Densidade Pós-Sináptica/química , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de AMPA/biossíntese , Esquizofrenia/genética , Filtro Sensorial/fisiologia , Transmissão Sináptica/fisiologia , Proteínas de Transporte Vesicular/deficiência , Proteínas de Transporte Vesicular/genética
3.
Nat Neurosci ; 19(8): 1010-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27294513

RESUMO

Neurotransmission requires precise control of neurotransmitter release from axon terminals. This process is regulated by glial cells; however, the underlying mechanisms are not fully understood. We found that glutamate release in the brain was impaired in mice lacking low-density lipoprotein receptor-related protein 4 (Lrp4), a protein that is critical for neuromuscular junction formation. Electrophysiological studies revealed compromised release probability in astrocyte-specific Lrp4 knockout mice. Lrp4 mutant astrocytes suppressed glutamatergic transmission by enhancing the release of ATP, whose level was elevated in the hippocampus of Lrp4 mutant mice. Consequently, the mutant mice were impaired in locomotor activity and spatial memory and were resistant to seizure induction. These impairments could be ameliorated by blocking the adenosine A1 receptor. The results reveal a critical role for Lrp4, in response to agrin, in modulating astrocytic ATP release and synaptic transmission. Our findings provide insight into the interaction between neurons and astrocytes for synaptic homeostasis and/or plasticity.


Assuntos
Astrócitos/metabolismo , Hipocampo/metabolismo , Receptores de LDL/metabolismo , Transmissão Sináptica/fisiologia , Trifosfato de Adenosina/metabolismo , Agrina/genética , Agrina/metabolismo , Animais , Proteínas Relacionadas a Receptor de LDL , Camundongos Knockout , Junção Neuromuscular/metabolismo , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Receptores Colinérgicos/metabolismo , Receptores de LDL/genética
4.
J Pharmacol Sci ; 128(4): 193-201, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26275469

RESUMO

Neural tissue exposure to valproic acid (VPA) increases several pro-survival phospho-proteins that can be used as biomarkers for indicating a beneficial drug response (pAkt(Ser473), pGSK3ß(Ser9), pErk1/2(Thr202/Tyr204)). Unfortunately, targeting VPA to neural tissue is a problem due to severe asymmetrical distribution, wherein the drug tends to remain in peripheral blood rather than localizing within the brain. Intracerebral delivery of an amide-linked VPA-PEG conjugate could address these issues by enhancing retention and promoting cerebro-global increases in pro-survival phospho-proteins. It is necessary to assay for the retained bioactivity of a PEGylated valproic acid molecule, along with locating an intracranial cannula placement that optimizes the increase of a known downstream biomarker for chronic VPA exposure. Here we show an acute injection of VPA-PEG conjugate within brain tissue increased virtually all of the assayed phospho-proteins, including well-known pro-survival factors. In contrast, an acute injection of VPA expectedly decreased signaling throughout the hour. Needle penetration into whole brain tissue is the intentional cause of trauma in this procedure. The trauma to brain tissue was observed to overcome known phospho-protein increases for unmodified VPA in the injected solution, while VPA-PEG conjugate appeared to induce significant increases in pro-survival phospho-proteins, despite the procedural trauma.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Encéfalo/metabolismo , Fosfoproteínas/metabolismo , Ácido Valproico/administração & dosagem , Ácido Valproico/farmacologia , Animais , Biomarcadores/metabolismo , Lesões Encefálicas/etiologia , Injeções Intraventriculares/efeitos adversos , Masculino , Polietilenoglicóis , Ratos Sprague-Dawley , Ácido Valproico/farmacocinética
5.
Proc Natl Acad Sci U S A ; 111(42): E4429-38, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288731

RESUMO

ErbB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), a receptor tyrosine kinase of the ErbB family, is overexpressed in around 25% of breast cancers. In addition to forming a heterodimer with other ErbB receptors in response to ligand stimulation, ErbB2 can be activated in a ligand-independent manner. We report here that Erbin, an ErbB2-interacting protein that was thought to act as an antitumor factor, is specifically expressed in mammary luminal epithelial cells and facilitates ErbB2-dependent proliferation of breast cancer cells and tumorigenesis in MMTV-neu transgenic mice. Disruption of their interaction decreases ErbB2-dependent proliferation, and deletion of the PDZ domain in Erbin hinders ErbB2-dependent tumor development in MMTV-neu mice. Mechanistically, Erbin forms a complex with ErbB2, promotes its interaction with the chaperon protein HSP90, and thus prevents its degradation. Finally, ErbB2 and Erbin expression correlates in human breast tumor tissues. Together, these observations establish Erbin as an ErbB2 regulator for breast tumor formation and progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Receptor ErbB-2/metabolismo , Adulto , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Feminino , Deleção de Genes , Técnicas de Silenciamento de Genes , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação , Ligação Proteica
6.
Dev Biol ; 386(1): 165-80, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24269904

RESUMO

We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC-γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca](i)). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 min after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca](i) and other fertilization events. As compared to 14 other lipids, PA specifically bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca](i), PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca](i) release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca](i) release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization.


Assuntos
Cálcio/metabolismo , Fertilização , Ácidos Fosfatídicos/metabolismo , Fosfolipase C gama/metabolismo , Xenopus laevis/metabolismo , Quinases da Família src/metabolismo , 1-Butanol/química , Sequência de Aminoácidos , Animais , Diglicerídeos/química , Ativação Enzimática , Exocitose , Feminino , Concentração Inibidora 50 , Lipídeos/química , Masculino , Microdomínios da Membrana , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas/metabolismo , Espermatozoides/metabolismo , Fatores de Tempo , Xenopus
7.
Pharmacol Biochem Behav ; 103(2): 237-44, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22960225

RESUMO

Valproic acid (VPA) is the most widely prescribed antiepileptic drug due to its ability to treat a broad spectrum of seizure types. However, potential complications of this drug include anticonvulsant polytherapy metabolism, organ toxicity and teratogenicity which limit its use in a variety of epilepsy patients. Direct delivery of VPA intracerebroventricularly (ICV) could circumvent the toxic effects normally seen with the oral route of administration. An additional potential benefit would be significantly reduced dosing while achieving high brain concentrations. Epileptogenic tissue from patients with intractable seizures has shown significant cell death which may be mitigated by maximizing cerebral VPA exposure. Here we show ICV administration of VPA localized to the periventricular zone increased pro-survival phospho-proteins (pAkt(Ser473), pAkt(Thr308), pGSK3ß(Ser9), pErk1/2(Thr202/Tyr204)) and growth cone associated proteins (2G13p, GAP43) in a whole animal system. No significant changes in DCX, NeuN, synaptotagmin, and synaptophysin were detected. Assessment of possible behavioral alterations in rats receiving chronic central infusions of VPA was performed with the open field and elevated plus mazes. Neither paradigm revealed any detrimental effects of the drug infusion process.


Assuntos
Fosfoproteínas/metabolismo , Ácido Valproico/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Proteína Duplacortina , Imuno-Histoquímica , Injeções Intraventriculares , Masculino , Ratos , Ratos Sprague-Dawley , Ácido Valproico/administração & dosagem
8.
Mol Brain ; 5: 7, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22309736

RESUMO

BACKGROUND: The neuromuscular junction (NMJ) is a cholinergic synapse that rapidly conveys signals from motoneurons to muscle cells and exhibits a high degree of subcellular specialization characteristic of chemical synapses. NMJ formation requires agrin and its coreceptors LRP4 and MuSK. Increasing evidence indicates that Wnt signaling regulates NMJ formation in Drosophila, C. elegans and zebrafish. RESULTS: In the study we systematically studied the effect of all 19 different Wnts in mammals on acetylcholine receptor (AChR) cluster formation. We identified five Wnts (Wnt9a, Wnt9b, Wnt10b, Wnt11, and Wnt16) that are able to stimulate AChR clustering, of which Wnt9a and Wnt11 are expressed abundantly in developing muscles. Using Wnt9a and Wnt11 as example, we demonstrated that Wnt induction of AChR clusters was dose-dependent and non-additive to that of agrin, suggesting that Wnts may act via similar pathways to induce AChR clusters. We provide evidence that Wnt9a and Wnt11 bind directly to the extracellular domain of MuSK, to induce MuSK dimerization and subsequent tyrosine phosphorylation of the kinase. In addition, Wnt-induced AChR clustering requires LRP4. CONCLUSIONS: These results identify Wnts as new players in AChR cluster formation, which act in a manner that requires both MuSK and LRP4, revealing a novel function of LRP4.


Assuntos
Células Musculares/metabolismo , Receptores Colinérgicos/metabolismo , Proteínas Wnt/metabolismo , Agrina/farmacologia , Animais , Análise por Conglomerados , Células HEK293 , Humanos , Proteínas Relacionadas a Receptor de LDL , Camundongos , Células Musculares/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de LDL/metabolismo
9.
J Neurosci ; 31(23): 8491-501, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21653853

RESUMO

Neuregulin 1 (NRG1) is a trophic factor that has been implicated in neural development, neurotransmission, and synaptic plasticity. NRG1 has multiple isoforms that are generated by usage of different promoters and alternative splicing of a single gene. However, little is known about NRG1 isoform composition profile, whether it changes during development, or the underlying mechanisms. We found that each of the six types of NRG1 has a distinct expression pattern in the brain at different ages, resulting in a change in NRG1 isoform composition. In both human and rat, the most dominant are types III and II, followed by either type I or type V, while types IV and VI are the least abundant. The expression of NRG1 isoforms is higher in rat brains at ages of E13 and P5 (in particular type V), suggesting roles in early neural development and in the neonatal critical period. At the cellular level, the majority of NRG1 isoforms (types I, II, and III) are expressed in excitatory neurons, although they are also present in GABAergic neurons and astrocytes. Finally, the expression of each NRG1 isoform is distinctly regulated by neuronal activity, which causes significant increase in type I and IV NRG1 levels. Neuronal activity regulation of type IV expression requires a CRE cis-element in the 5' untranslated region (UTR) that binds to CREB. These results indicate that expression of NRG1 isoforms is regulated by distinct mechanisms, which may contribute to versatile functions of NRG1 and pathologic mechanisms of brain disorders such as schizophrenia.


Assuntos
Córtex Cerebral/fisiologia , Neuregulina-1/genética , Neurônios/fisiologia , Isoformas de Proteínas/genética , Fatores Etários , Análise de Variância , Animais , Astrócitos/citologia , Astrócitos/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/citologia , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Neuregulina-1/metabolismo , Neurônios/citologia , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...